
32 The Delphi Magazine Issue 64

Beating The System:
IDE Secrets, Part 1
by Dave Jewell

Here’s a little experiment you
might like to try out. Create

yourself a new application in the
Delphi IDE (I’m assuming that
you’re using Delphi 5, by the way:
your mileage may vary with earlier
incarnations), and then go to the
Packages tab on the Project |
Options dialog. Click the Build
with Runtime Packages checkbox to
ensure that you end up with a
‘packaged’ version of your applica-
tion. Next, add the package name
DSNIDE50 to the list of referenced
runtime packages immediately
below the aforementioned
checkbox. You will find that your
application compiles and runs as
normal.

If you now add the unit name
DockForm to your uses clause, the
program will compile and run as
before. Next, try changing the
ancestor class of your form
window from the usual TForm to
TDockableForm. Again, the compiler
will build your application without
complaint, but this time you will
get an access violation when you
execute it.

So what’s going on here and
what on earth is all this stuff?

IDE-Only Packages
Despite frequent newsgroup
rumours to the contrary, the
Delphi and C++Builder IDEs are
both written in Delphi. Up until
Delphi 3 (if memory serves), the
development environment was a
single chunk of monolithic code.
Having said that, it did still require
the presence of a number of extra
DLLs, notably the compiler (which
has always been written in C),
together with the debugger, and a
couple of smaller DLLs which
implement the core functionality
of the text editor engine and
keyboard processing. To put this
another way: prior to Delphi 4
the IDE was an unpackaged

executable, but from Delphi 4
onwards the IDE started using
packages in a big way.

Some of the packages used by
the IDE are the ones we all know
and love, such as VCL50 (again, I’m
sticking with Delphi 5 for the sake
of argument) but others are more
private packages that are designed
specifically for the benefit of the
IDE itself. Chief amongst these is
CORIDE50, which implements much
of what we perceive as being the
IDE proper. This particular mon-
ster weighs in at nearly 4Mb. In the
past, Borland R&D have told me
that splitting up the IDE into sepa-
rate packages makes it easier for
them to work on the development
system in a team environment, but
(from my perspective) it also has
the not inconsiderable benefit of
making it easier to poke around
and see what’s going on ‘under the
hood’!

A number of Delphi’s internal
packages are somewhat less secret
than others. If you have done much
work with packages, you will know
that, when building a new package,
the development system spits out
not only the .BPL executable, but
also the corresponding .DCP file. A
.DCP file is essentially a concatena-
tion of all the individual .DCU files
in the package, and having the
.DCP file to hand makes it possible
to write code which accesses the
goodies inside a package, without
having access to the package source
or the individual DCU files which
make up the package. This is a very
important point!

Now, consider the aforemen-
tioned CORIDE50 package. Because
Delphi 5 doesn’t ship with the cor-
responding CORIDE50.DCP file, it is
not possible to simply add
CORIDE50 to a new project in the
way that I’ve just demonstrated
with DSNIDE50. Needless to say, the
DSNIDE50.DCP file is included with

Delphi 5. You can find it in your
DELPHI5\LIB directory, where you
will also find numerous other
.DCP files.

As you will have guessed by
now, DockForm is the name of one of
the units inside DSNIDE50 and
TDockableForm is one of the various
classes exported from this unit.
The reason our sample project
crashed is not surprising: all the
code in these IDE-only units and
packages was written specifically
to be used from within the Delphi
IDE, if you try and execute it within
the context of a standalone appli-
cation then things will certainly
screw up.

A Treasure Chest
For Expert Writers
The fact that DSNIDE50 and its
brethren cannot be used from an
application matters not a jot if you
are in the business of creating
Delphi IDE experts and add-ins. If
this is the case, then I think the
remainder of this article will prove
quite an eye-opener for you. In
reality, these undocumented pack-
ages contain a wealth of goodies
for those who want to augment the
functionality of the IDE.

As an example of what I’m get-
ting at, try pointing your web
browser at www.puthoon.com/
ideDock/ideDock.html. This is the
home of Mr ‘Puthoon’ (nee
Python) who has put together a set
of Delphi units which make it pos-
sible to create add-in Delphi
experts with forms that dock with
the ‘regular’ IDE windows (the
Object Inspector, Project Manager
and so on) in the usual way. Much
of this code derives from GExperts
and the work of others, such as
Stefan Hoffmeister.

However, if you peruse this
code, you will quickly discover
that the programming techniques
used are rather... umm... uncon-
ventional, to say the least. To cut a
very long story short, all this stuff

procedure InvokeDummyExpert;
begin
TDummyExpert.Create(
Application).Show;

end;

➤ Listing 1

December 2000 The Delphi Magazine 33

works by doing really ugly things
such as patching VMT tables to
fool the IDE into thinking that your
new expert form is derived from
the same ancestor that’s used to
implement IDE dockable windows.
It works, but it represents a rather
dirty hack of truly gargantuan pro-
portions. Surely there must be a
better way of doing the job?

There certainly is. Hopefully, by
now you are beginning to see
where I’m going. Surely it should
be possible to use DSNIDE50.DCP
(and others) to write IDE plug-ins
which integrate into the IDE just as
naturally as if they’d been written
by Borland themselves?

Painless
Dockable IDE Windows
To try this out, I created a new
package and wrote a minimalist
Delphi expert derived from
TIExpert in the usual way. This is a
‘standard’ expert, which means
that it simply appears as a menu
entry, IDE Secrets Demo Expert, on
the development system’s Help
menu. The business end of the
expert is simply this:

procedure TDemoExpert.Execute;
begin
InvokeDummyExpert;

end;

The InvokeDummyExpert call is
defined in another unit. It merely
creates an instance of a form class,
TDummyExpert, and ensures that it’s
visible: see Listing 1.

All standard stuff so far. Now
here is the cunning part: with the
package editor window open in the
IDE (see Figure 1) I right clicked on
the Requires node of the file list,
selected Add from the popup menu,
navigated to the location of my
DSNIDE50.DCP file and added it to
my new expert package. Finally,
inside the form unit, I added
DockForm to the uses clause and
changed the ancestor class of
TDummyExpert to TDockableForm.
After recompiling the expert and

invoking it from the Help menu, I
was rewarded with Figure 2, a nice
dockable form that looks and feels
just like a ‘native’. I think you will
agree that doing things this way is
a lot less hassle!

To be fair to Messrs Puthoon,
Hoffmeister, etc, it’s got to be
admitted that this technique will
really only work for Delphi 5 and
later. Prior to Delphi 5, Borland
didn’t ship DSNIDEXX.DCP as part of
Delphi and therefore you were
reduced to chasing VMT table
addresses.

Of course, anyone who has
spent some time working with
Eagle Software’s deservedly popu-
lar CodeRush 5.0 system will know
that this also allows you to create
new CodeRush plug-ins that dock
with native IDE windows in the
same way. I suspect that Mark
Miller (creator of CodeRush) does
this by creating TDockableForm
descendants, just as I’ve done
here, but I haven’t investigated
this in detail.

How It Works:
The IDE Desktop
So, if we can get IDE dockable
forms just by changing the ances-
tor to TDockableForm and linking
against DSNIDE50, then what other
wonderful goodies are lurking
inside this package? The answer is
a great deal. In this section I’m
going to take a more detailed look
at TDockableForm.

As we have already seen,
TDockableForm is defined inside the
DockForm unit. This class, in turn, is
derived from TDesktopForm which

➤ Figure 1: Having the relevant .DCP file is the key to easily accessing
the undocumented units contained within the DSNIDE50 package.
Just add it to your package project and away you go.

➤ Figure 2: Now wasn't that easy? A fully paid-up, dockable expert
window that looks and feels just like the stuff that's built into the
IDE itself. A lot less hassle than VMT hacking…

34 The Delphi Magazine Issue 64

is defined inside another internal
unit called DeskForm. TDesktopForm,
you will be glad to know, is a direct
ancestor of TForm. Thus, the overall
arrangement looks like this:

TForm (FORMS.PAS)
TDesktopForm (DESKFORM.PAS)
TDockableForm (DOCKFORM.PAS)

Since we’re all familiar with TForm,
let’s begin with TDesktopForm and
the DeskForm unit, seeing what
extra functionality they bring to
the party.

As the name suggests, the
DeskForm unit is all about the desk-
top: not the Windows desktop, but
the IDE desktop! The primary job of
this unit is to add the necessary
functionality to a TFormdescendant
such that it works transparently
with the Delphi desktop. If you’ve
used this feature much, you’ll
know that the Delphi IDE has the
ability to save an arbitrary docking
arrangement of IDE windows,
including the size and position of
each form. Wouldn’t it be great if
you could write add-in experts
which work in exactly the same
way?

The good news is that it’s very
easy to do this, because all the
required code is already built into
DeskForm. But before we can do
that, we need to have a greater
understanding of the IDE’s desktop
architecture. To begin with, you
need to register your form as a fully
paid up member of the desktop
community. This is typically done
in the initialization clause of
your form unit, as I’ve shown in
Listing 2.

In this particular example, I’ve
shown the actual code snippet that
the built-in property inspector
uses when registering itself with

the desktop system. The Register-
DesktopFormClass is another inter-
nal routine, defined inside another
unit called DeskUtil. This unit also
lives inside the DSNIDE50, so you
can just add it to your uses clause
as normal.

This is another reason why this
month’s musings are specific to
Delphi 5.0. In Delphi 4.0, the
RegisterDesktopFormClass was
implemented inside a unit called
Desktop rather than DeskUtil. A lot
of rearrangement of the internal
routines took place between 4.0
and 5.0, and it’s my hope that
Borland’s decision to ship
DSNIDE50.DCP is symptomatic of an
eventual plan to officially docu-
ment all of this stuff. Maybe in
Delphi 6.0? Here’s hoping.

If you want to see what the func-
tion prototype for this routine
looks like, here it is:

procedure RegisterDesktopFormClass

(AFormClass: TDesktopFormClass;

const Section: String;

const InstanceName: String);

The TDesktopFormClass type is
defined inside DeskForm.pas like
this:

TDesktopFormClass =
class of TDesktopForm;

In other words, you can pass any
derivative of TDesktopForm as the
first parameter to the routine. The
Section and InstanceName parame-
ters work somewhat like the Sec-
tion and Name parameters used by
.INI files. To see why this should be
so, try saving a desktop arrange-
ment using the IDE and you should
end up with a file that has the
extension .DST. If you open this file
using a standard text editor, you

will see that it is indeed structured
just like an .INI file. Figure 3 shows
a portion of a desktop file: just the
part that’s specific to the property
inspector window.

Unless you plan to support
multiple instances of your IDE
expert, you should set the Inst-
anceName and Section parameters
to the same string. Be sure not to
use a section name that already
exists. If you do, things will go
pear-shaped very quickly! Most of
the existing section names have
obvious values such as
PropertyInspector, AlignmentPal-
ette, CodeExplorer and so on. You
can discover more of them by
inspecting the contents of a saved
desktop file.

Something else you need to be
aware of is the way in which
TDesktopForm introduces Form-
Create and FormDestroy handlers
within the DeskForm unit. You don’t
need to worry too much about
what’s going on in these handlers,
but if you implement FormCreate
and/or FormDestroy handlers of
your own, then you should ensure
that the inherited handlers get
called in the usual way, as shown
in Listing 3.

Oh, yes, I didn’t mention
DeskSection, did I? This is a read-
able and writeable string property
of TDeskForm. Again, it needs to be
set to the section name of your
form class. This should be done
before you call the inherited
FormCreate routine. After calling
FormCreate, you’ve got the oppor-
tunity to perform any other
expert-specific initialisation. For
example, you might set the form’s
HelpContext property here and (if
things have been properly inte-
grated with the Delphi help
system) your own expert-specific
help info will appear if the devel-
oper clicks F1 while your expert
has the focus. As an example, try
setting the HelpContextproperty to
$578 and you’ll see the help infor-
mation for the property inspector.

Further Desktop Integration
TDesktopFormClass defines a
number of virtual routines, one of
which is SaveWindowState, defined
like this:

initialization
RegisterDesktopFormClass(
TPropertyInspector, 'PropertyInspector', 'PropertyInspector');

end.

procedure TDummyExpert.FormCreate (Sender: TObject);
begin
DeskSection := 'DummyExpert';
Inherited FormCreate (Sender);
... other initialisation here ...

end;

➤ Above: Listing 2 ➤ Below: Listing 3

36 The Delphi Magazine Issue 64

procedure SaveWindowState(
Desktop: TMemIniFile;
isProject: Boolean);
virtual;

At the point at which this routine
gets called, the IDE is trying to save
the current desktop configuration.
The Desktop parameter is obvi-
ously a reference to the target file
whereas isProject indicates
whether or not (I think!) a project is
active at the time the desktop is
saved: this may or may not be
relevant to your expert.

It’s very useful being able to
override SaveWindowState in order
to save your own form-specific
information as part of the desktop
file. For example, Listing 4 shows a
sample of what the property
inspector window does.

As you can see, it simply calls the
inherited SaveWindowState routine
and then uses the TMemIniFile vari-
able in the normal way to write an
integer variable to the file. This is
saved with a key name of SplitPos.
As you might guess, this corre-
sponds to the horizontal position
of the vertical dividing line that
forms an integral part of the prop-
erty inspector. I have (rather taste-
lessly I’m afraid) highlighted the
corresponding entry in the desk-
top file in Figure 3.

PropertyList is a property of the
TPropertyInspector class itself and
equates to the specialised listbox
control that’s used to display prop-
erties and their corresponding

values, whereas Middle is a prop-
erty of that control, and obviously
gives us the current divider
position.

The other side of the coin is
another virtual routine, LoadWin-
dowState, which is defined like this:

procedure LoadWindowState(
Desktop: TMemIniFile);
virtual;

Using these two routines,
LoadWindowState and SaveWindow-
State, you can easily save your
own custom window state info as
part of the desktop file.

TDockableForm
There’s more that could be said
about TDeskForm, but let’s give it a
break for now. Instead, we’ll take a
look at TDockableForm which, you
will remember, is a descendant of
TDeskForm and adds docking capa-
bilities to the class.

If you examine all the dockable
menus inside the Delphi
IDE, you will see that
they all have a right click

context menu which incorporates
a Dockable item. This is checked
or unchecked according to
whether or not the form is in a
dockable or undockable state.
Selecting the menu item toggles
from one state to the other. In
order to do the job properly, we
would obviously like to emulate
this behaviour. How is it done?

If you could peek at the declara-
tion for TDeskForm, you would see
something like Listing 5.

The key to toggling the
‘dockability’ of your expert form is
to add a new popup menu to the
expert form, create a new menu
item (say, Dockable1) and link its
Action property to the DockableCmd
field like this:

Dockable1.Action :=
DockableCmd;

You can conveniently place this
statement into your form’s
FormCreate routine as previously
discussed. With this done, the
menu item will automatically be
named Dockable, it will be checked
or unchecked as appropriate, and
the right thing will happen when
the item is selected. If an expert
form is currently docked to
another window, it will snap away
as soon as the Dockable menu item
is unchecked, just like you’d
expect. In a similar way, you can
implement Stay on Top and Zoom
Windows functionality in your form
expert’s context menu merely by
creating more menu items and
assigning their Action properties
to the other two fields shown
above. Easy peasy!

If, for whatever reason, you
don’t like working with action lists,

➤ Figure 3: Here's part
of a desktop
configuration file
as saved by the IDE.
As you can see, it's
essentially a
specialised .INI file.
The highlighted
line shows how it
is possible to save
custom window-
specific information
out to the desktop
file (see the text
for more info).

procedure TPropertyInspector.SaveWindowState(
Desktop: TMemIniFile; isProject: Boolean);

begin
Inherited SaveWindowState (Desktop, isProject);
Desktop.WriteInteger (DeskSection, 'SplitPos', PropertyList.Middle);

end;

type
TDockableForm = class(TDesktopForm)
published
DockActionList: TActionList;
DockableCmd: TAction;
StayOnTopCmd: TAction;
ZoomWindowCmd: TAction;
... more stuff ...

➤ Above: Listing 4 ➤ Below: Listing 5

December 2000 The Delphi Magazine 37

or you would rather toggle a form’s
dockable state in some other way,
you can directly assign to the
Dockableproperty of the form. It’s a
read/write Boolean property.

This would probably be a good
point at which to mention menus.
Earlier, I stressed the importance
of remembering to call the inher-
ited FormCreate and FormDestroy
handlers whenever you override
these event handlers. There are
several reasons for this, but one of
them relates to the menu handling
system within the IDE. As you
might imagine, you have poten-
tially got numerous popup menus
associated with different windows,
each of which has its own set of
keyboard shortcuts. In order to tie
everything together, the Form-
Create handler of TDesktopForm
checks to see if the form has got an
associated popup menu. If so, the
popup menu is automatically regis-
tered with a centralised menu
manager.

Implementing ToolBar Forms
Of course, there are other descen-
dants of TDockableForm which are
equally interesting.

If you add the DockToolForm unit
to the uses clause of your form unit,
then you can create a new form-
based expert which derives from
TDockableToolbarForm. As the name
suggests, this is a dockable form
which also incorporates a toolbar.
The familiar project manager
window is an example of such a
form, the package editor is
another.

If you have used the project
manager or package editor very
much, you will know that these IDE
windows have a nifty (but not
instantly obvious!) feature: you
can hold down the mouse over the
bottom edge of the toolbar area
and then drag the mouse up or
down to create a large or small icon
toolbar.

Strictly speaking, this is a bad
choice of terminology, since the
size of the toolbar icons does not
actually change, as shown in Figure
4. What happens is that in ‘small
icon’ mode the button captions are
not drawn beneath each glyph.
You’ll be pleased to know that, as

procedure TDummyExpert.FormCreate(Sender: TObject);
begin
DeskSection := 'DummyExpert';
Inherited FormCreate (Sender);
ToolBar1.Images := ToolImages;
// Create some buttons in the toolbar as per Package Editor
with TCommandButton.Create (ToolBar1) do begin
Parent := ToolBar1;
Left := 4; Top := 0; Width := 56; Height := 36;
Action := CompileAction;
Images := ToolImages;
ShowCaption := True;

end;

➤ Above: Listing 6 ➤ Below: Listing 7

➤ Figure 4: The Project Manager and Package Expert are examples of
built-in form classes that implement a 'squeezable' toolbar that can
be dragged into either a large or small configuration.

uses
Classes, IDECommandButton, IDEMenuAction, IDEDockCtrls, IDEDockPanel;

procedure Register;
implementation
procedure Register;
begin
RegisterComponents('IDE Internals', [TCommandButton, TPopupAction,
TTabDockPageControl, TDockPanel, TEditorDockPanel]);

end;

before, this functionality comes as
part of the DockToolForm unit.

To demonstrate how this all
works, I created another dummy
expert form derived from the
TDockableToolbarForm class. I also
used a little sleight of hand to
extract the two TImageList compo-
nents that belong to the package
editor from the Delphi IDE and
incorporate them into my new
form. Having done this, it was pos-
sible to add new buttons to the
(inherited) toolbar control easily
with the code in Listing 6.

A compiled version of this
dummy expert, which is called
IDESECRETS.BPL, is included on this
month’s companion disk, along

with complete source code. You
install the .BPL file into the Delphi
IDE in the usual way, whereupon
you will see a new entry on the
Delphi Help menu. Click this item
and the dummy expert will appear.
Figure 5 shows what you should
expect to see. You can resize the
toolbar just like the project man-
ager or package editor, and of
course it’s a dockable form too.
Yes, the actual buttons are dis-
abled but, hey, this is a dummy
expert! It’s up to you to add your
own code to do something useful
here.

If you consult the source
code, you will notice that I have
also duplicated the action list

38 The Delphi Magazine Issue 64

➤ Figure 6: Looks like an ordinary collection of Delphi components?
These are internal IDE controls that have been exposed to our gaze
through the simple expedient of writing a design-time package that
registers them on the Component Palette.

component from the IDE itself.
This action list implements various
actions that relate to the ‘real’
package editor. It’s included
purely for illustrative purposes.

If you’re sharp eyed, you will
also spot the fact that I’m using a
hitherto unmentioned component,
TCommandButton, to create the but-
tons that appear in the dockable
toolbar form. This button is
defined in the IDECommandButton
unit which also happens to be part
of DSNIDE50. This button control is
derived from TSpeedButton and
adds some extra functionality,
most notably in terms of enhanced
resizing and layout control, which
of course is exactly what’s needed
for us in the dockable toolbar form
scenarios that we’ve just been
looking at.

More Dastardly Deeds
When I discovered that there were
a number of interesting internal
VCL controls inside DSNIDE50, I real-
ised that these controls could be
made to appear on the IDE’s com-
ponent palette simply by writing a
do-nothing package whose only
job is to register the components in
the usual way, via the Register-
Components routine. This is illus-
trated in Listing 7.

Sure enough, this works as
advertised, and you end up with
some interesting new components
on your palette. It goes without
saying that none of this stuff is of
any use for writing ordinary appli-
cations; it’s specific to the creation
of experts and add-ins. Inci-
dentally, if this sort of thing turns
you on, you might like to know that
there are lots more VCL controls
buried inside the VCLIDE50.BPL

package. The bad news is that
Borland don’t provide a .DCP file
for this package, but I’m working
on it �.

In next month’s column I’ll con-
tinue this investigation of Delphi
IDE internals and we’ll peer even
more deeply into what’s available
to the aspiring expert author.

Dave is a freelance consultant/
programmer and technical jour-
nalist specialising in system-level
Windows and DOS work. He is
Technical Editor of Developers
Review which is also published by
iTec. You can contact Dave at
TechEditor@itecuk.com

Copyright © 2000 Dave Jewell
All Rights Reserved

➤ Figure 5: Here's my clone of the Package
Editor form. Although the toolbar buttons
are disabled in this example, the toolbar
works as advertised, and it is fully
dockable. It would be a lot of work to get
this working if we weren't making use of
internal IDE routines.

	IDE-Only Packages
	A Treasure Chest For Expert Writers
	Painless Dockable IDE Windows
	How It Works: The IDE Desktop
	Further Desktop Integration
	TDockableForm
	Implementing ToolBar Forms
	More Dastardly Deeds

